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1. This paper contains a short account of results whose detailed proofs
will be published later.
We define the function Z(s) by

Z(s) = 13'(am2 + bmn + cnl2)8 (1)
where s = a + it(a and t, real), o > 1, and the summation is for all integers
m, n (each going from - to + co), while the dash indicates that m =
n = 0 is excluded from the summation; further a and c are positive
numbers while b is real and subject to 4ac -b = A > 0.

It is well known that the function Z(s), defined for a > 1 by (1), can be
continued analytically over the whole s-plane, and satisfies a functional
equation similar to the one satisfied by the Riemann Zeta Function.
The function Z(s), thus defined, is a meromorphic function with a simple
pole at s = 1.

Deuring (Math. Ztschr., 37, 403-413 (1933)) obtained an important
formula for Z(s). Deuring's work led Heilbronn (Quart. J. Maths.,
Oxford, 5, 150 (1934)) to the proof of the following famous conjecture of
Gauss on the class-number of binary quadratic forms with a negative
fundamental discriminant: let h(- A) denote the number of classes of
binary quadratic forms of negative fundamental discriminant -iA =
-- 4ac, then

h(-A)-co as A -*c (2)

Again using the ideas of Heilbronn and Deuring, Siegel proved that

h(- A.) > A'12 - e [A> A(e)] (3)
which is a great advance on (2).
Our starting point is the formula:

Z(s) = 2¢(2s)a-S + 2 -a /2V (2s - l(s - '/2) + Q(s) (4)r(s) As

where

Q(s)=
rS-2S +3/2 coW (2 (n7rb) f - 8/2Q(S) a T() As/_- /4 f al-2ln) cos fo -

7rnA&/"exp( 2a (cj$+ c-1jdo (4)

VOL. 35, 1949 371



372 MATHEMATICS: CHOWLA AND SELBERG PROC. N. A. S.

Here ak(n) denotes the sum of the kth powers of the divisors of n, and
D(s) is Riemann's Zeta Function. The series for Q(s) is highly convergent.
Taking a crude estimate of the series for Q(s) we obtain the formula of
Deuring referred to above.

2. The formula (4) can be applied to the proof of the positiveness of
certain Dirichlet L-functions at s = l/2. In fact we define for s > 0,

L4(s) = n nS

where (n/p) is Legendre's symbol defined as follows:

If n 0 (mod p), then (n/p) = + 1 if the congruence X2 = n (mod p)
is soluble; (n/p) = -1 if the congruence x2 = n(mod p) is insoluble

If n -O(p), then

(n/p) = 0

The positiveness of Lp(s) for 0 < s _ 1 was proved by S. Chowla (Acta
Arithmetica, Band 1, 114 (1935)) in a large number of special cases, e.g., for
p = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 61, 71, 73, 79, 83,
89, 97.
But no information was obtained in the cases p = 43, 67, 163 (here the

class number h(-p) is small). Heilbronn (Acta Arithmetica, Band 2,
212 (1937) proved that there are infinitely many primes p for which the
method of Chowla gives no information. Curiously enough, the present
method is more successful with precisely those cases like p = 43, 67, 163
(class number h(-p) = 1) where the previous method failed. In these
three cases we obtain L4(1/2) > 0 (Rosser has recently, in an unpublished
paper, settled the cases p = 43 and p = 67 by an entirely different method).
That L,(1/2) > 0 in these cases, is not surprising, for if there is a prime p
such that LX(/2) < 0 then the extended Riemann hypothesis is false!
These results are deduced from the following
THEOREM: If p is an odd prime >7 and if h(-p) = 1, then (c = r/2)

WI/2)Lp(1/2) = Y + log (P) + 80. e cP (5)
87r / 7rV\p(l - ecVP-)

where 'y is Euler's constant and 0 is a real number such that 0 | < 1.
Remark that we can also show the positivity of L4(a) on the whole stretch
1/2 < a < 1 by the same method, in the three cases p = 43, 67, 163. This can
be done with a little more computation.

3. It is well known that we have

h(-d) = 1 (6)
in the nine cases d = 3, 4, 7, 8, 11, 19, 43, 67, 163. Heilbronn and Linfoot
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have proved that (6) has at most 10 solutions; further, that if (6) has a
tenth solution then d must be very large indeed; in fact d > 5.10w (Lehmer).

It follows from (5) that if (6) has a tenth solution d = do, then

Ld(1/2) < 0 [d = do]

It is known that do is necessArily a prime, and is in fact, = 3 (mod 8).
4. We apply (4) to a classical problem of the theory of elliptic functions.

Write, as usual,

K=J /2 d( k

K' = T/2 1 (k2+k< 2 = 1)

It has long been known that K can be calculated in finite terms whenever
iK'/K is a number belonging to any of the imaginary quadratic fields
k(V-i), k( /-2), k(V-3). This is deduced from the fact thatK can
be calculated in finite terms when

K'l/K =n1 (n = 1, 2, 3)

Thus when n = 1 i.e., k = we have

K_r2(1/4)
4V7

and there are similar results obtained (each by a different method!) for
the cases n = 2, 3. We prove that K can be calculated in finite terms
whenever iK'/K is a number in an imaginary quadratic field. More
precisely, our result is as follows: let d be a negative integer 0 or 1
(mod 4) and so that d or d/4 is a square-free integer. Further let h denote
the class-number h(d) and

w = 6,4,2 according asd= -3,d= -4, d < -4.

Finally (d/m) denotes the Kronecker symbol. Then,
THEOREM: Let iK'/K be a numberfrom thefield k(Vd). Then we have

K = X/i7r {m: r (m)( } (7)

where X is an algebraic number.
A special case of (7) is the following:
THEOREM: If K'/K = pand if h(-p) = 1, th
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2K 21/8(kk)-1/6 )r

where (p is a prime) and w = 6 ifp = 3, w =2 ifp> 3;. a runs through the

P -21 quadratic residues of p that lie between 0 and p, while A runs through
2

the remaining P2 numbers between 0 and p.

Specializing again to the case p = 7 we obtain in the usual notation for
hypergeometric series:

2r('/7)r(2/7)Pr(4/7) ~(1/2
F(1/4, 1/4, 1; 1/64) = 47 r(3/7)r(6/7)r(6/7)J

5. Let Gd(s) denote the analytical continuation of the function defined
for a > 3/2 by the series

E/(X2 + y2 + dz2)S-

From a formula similar to (4) it is deduced that
THEOREM: There exists a real number Od such that

Gd(Od) =0 [d > do]
where Od 0 as d - o, but Od 0 0.
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1. Introduction.-In the course of several important researches in
elementary number thepry A. Selberg1 proved some months ago the
following asymptotic formula:

E (log p)2 + Elogplogq = 2xlogx + 0(x), (1)
p 'x pg x

where p and q run over the primes. This is of course an immediate conse-
quence of the prime number theorem, The point is that Selberg's in-

374 PROC. N. A. S.


